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Static eye imitations
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Static eye imitations

1. Static 2D images
• paper and foil printouts
• images displayed on a screen (hypothetical)
• simple but alarming: possible impersonation of a given eye

2. Static 3D objects
• authentic eye + printed contact lens
• prosthetic eyes
• impersonation difficult or impossible; typical aim: disturbing an

iris pattern to cause a false rejection
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Countermeasures for static eye imitations

1. Passive measurement
• 2D liveness features: frequency analysis, use of local binary

patterns, use of thermal data
• 3D liveness features: eyeball shape, iris tissue structure,

Purkinje reflections

2. Active measurement
• positions of stimulated NIR reflections
• tissue absorption for different NIR wavelengths

Example thermal image of the eyes (left) and 3D structure of the iris (right)
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Dynamic eye imitations

1. Deformable objects with printed iris patterns

2. Movies displayed on a screen, off-line or on-line (hypothetical)

3. Image capture under coercion
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Countermeasures for dynamic eye imitations

1. Passive measurement:
analysis of involuntary activities of the eye

• spontaneous oscillations of the pupil size
• detection of spontaneous blinks

2. Active measurement:
use of voluntary activities of the eye

• gaze detection when following moving objects
• eyeball dynamics (analysis of fixations and saccades)
• pupil dynamics (modeling of pupil size variations when

stimulated by visible light)
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Modeling of pupil dynamics
Clynes-Kohn nonlinear model

Liveness features: channel gains (Ki, Kr),
time constants (T1, T2, T3) and delays (τ1, τ2)
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Modeling of pupil dynamics
Model identification (finding a best fit)

φ̂ = argmin
φ∈Φ

N∑

i=1

(ŷi;φ − yi)
2

where:

φ = [Kr,Ki, T1, T2, T3, τ1, τ2]
T – liveness features

Φ – set of possible values of φ
φ̂ – identified liveness features
ŷi;φ – model output given the liveness features φ
yi – actual (observed) change of the pupil size
N – length of the observed sequence
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Processing of the modeling outcomes

1. Classification
• use of Support Vector Machine to

classify samples in φ-space
• SVM maximizes the gap between

samples of different classes
• SVM may solve linear and non-linear

problems (use of ‘kernel trick’)

2. Goodness of fit
• use of normalized root mean square error

GoF = 1−
‖ŷφ − y‖

‖ŷφ − ȳ‖

where ȳ is an average of y.
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Questions

Question 1: How to simulate odd reactions of the eye?
• using static objects → we’re doomed to succeed
• simulation of the coerced use → not really feasible
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Questions

Question 1: How to simulate odd reactions of the eye?
• using static objects → we’re doomed to succeed
• simulation of the coerced use → not really feasible

Question 2: Should we uncritically rely on classifier output?
• misclassifications always happen, so what about other metrics,

e.g. goodness of fit?

Question 3: How long shall we observe the eye?
• larger times give better modeling, but decrease usability
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Database of eye reactions to light changes
Re: Question 1 (How to simulate odd reactions of the eye?)

1. Collection of samples
• involuntary pupil oscillations under no light changes
• pupil reaction to positive and negative jumps in light intensity
• N = 25 volunteers × 2 eyes × K = 4 samples = 200 samples

2. Representatives of actual and odd reactions
• involuntary pupil oscillations as odd reactions
• stimulated changes in pupil size as actual reactions
• pupil modeled as a circle; pupil size = circle radius

3. Division of dataset into training and testing subsets
• leave-one-out cross-validation
• ‘one’ relates to the person, not a single sequence
• N divisions; in each division: 2(N − 1)K training samples and
2K testing samples
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Database of eye reactions to light changes
Re: Question 1 (How to simulate odd reactions of the eye?)

Adam Czajka | IBPC 2014 | 15/24



Decisions of linear SVM
Observation time: 5 seconds
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Classifier: linear SVM. Observation time: 5 sec.

 

 

Correct reaction of the eye

Odd (or no) reaction of the eye
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Decisions of linear SVM + goodness of fit
Re: Question 2 (Should we uncritically rely on classifier output?)
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Modeling horizon (observation time)
Re: Question 3 (How long shall we observe the eye?)
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FerrLive and FerrFake vs. observation time
Linear SVM, goodness of fit not considered
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FerrLive and FerrFake vs. observation time
SVM with Gaussian kernel, goodness of fit not considered
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Classifier: SVM with nonlinear kernel (RBF)
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FerrLive and FerrFake vs. observation time
SVM with Gaussian kernel, goodness of fit considered
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Conclusions

1. Dynamics of the pupil delivers interesting liveness features

2. Depending on the assumed dynamics of fake objects, linear
classification seems to be sufficient to recognize artefacts

3. Having a few additional seconds ( 3) while capturing the iris
may provide almost perfect recognition of actual and odd
behavior of the pupil

Adam Czajka | IBPC 2014 | 23/24



Contact

Adam Czajka, Ph.D.
aczajka@elka.pw.edu.pl

Biometrics Labratory
Research and Academic Computer Network (NASK)
Warsaw, Poland

Biometrics and Machine Learning Laboratory
Warsaw University of Technology
Warsaw, Poland

Adam Czajka | IBPC 2014 | 24/24

aczajka@elka.pw.edu.pl

